Sunday, November 27, 2011

arXiv: 28 November 2011

Back Reaction from Walls
We study the distance-redshift relation in a universe filled with 'walls' of pressure-less dust separated by under dense regions. We show that as long as the density contrast of the walls is small, or the diameter of the under dense regions is much smaller than the Hubble scale, the distance-redshift relation remains close to what is obtained in a Friedmann universe. However, when arbitrary density contrasts are allowed, every prescribed distance-redshift relation can be reproduced with such models.
 
Halo expansion in cosmological hydro simulations: towards a baryonic solution of the cusp/core problem in massive spirals
 A clear prediction of the Cold Dark Matter model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement with the observed rotation curves of spiral galaxies, challenging on small scales the otherwise successful CDM paradigm. In this work we employ high resolution cosmological hydro-dynamical simulations to study the effects of dissipative processes on the inner distribution of dark matter in Milky-Way like objects (M~1e12 Msun). Our simulations include supernova feedback, and the effects of the radiation pressure of massive stars before they explode as supernovae. The increased stellar feedback results in the expansion of the dark matter halo instead of contraction with respect to N-body simulations. Baryons are able to erase the dark matter cuspy distribution creating a flat, cored, dark matter density profile in the central several kpc of a massive Milky-Way like halo. The profile is well fit by a Burkert profile, with fitting parameters consistent with the observations. In addition, we obtain flat rotation curves as well as extended, exponential stellar disk profiles. While the stellar disk we obtain is still partially too thick to resemble the MW thin disk, this pilot study shows that there is enough energy available in the baryonic component to alter the dark matter distribution even in massive disc galaxies, providing a possible solution to the long standing problem of cusps vs. cores.
 
 The Shapes and Alignments of Dark Matter Halos
 We present measurements of the triaxial dark matter halo shapes and alignment correlation functions in the Millennium and Millennium-2 dark matter N-body simulations. These two simulations allow us to measure the distributions of halo shapes down to 10% of the virial radius over a halo mass range of 6E9 - 2E14 M_sun/h. We largely confirm previous results on the distributions of halo axis ratios as a function of halo mass, but we find that the median angle between halo major axes at different halo radii can vary by a factor of 2 between the Millennium-1 and 2 simulations because of the different mass resolution. Thus, error in the shape determinations from limited resolution is potentially degenerate with the misalignment of halo inner and outer shapes used to constrain Brightest Cluster Galaxy alignments in previous works. We also present simplifying parameterizations for the 3-D halo-mass alignment correlation functions that are necessary ingredients for triaxial halo models of large-scale structure and models of galaxy intrinsic alignments as contaminants for cosmic shear surveys. We measure strong alignments between halos of all masses and the surrounding dark matter overdensities out to several tens of Mpc/h, in agreement with observed shear-galaxy and cluster shape correlations. We use these measurements to forecast the contribution to the weak lensing signal around galaxy clusters from correlated mass along the line-of-sight. For prolate clusters with major axes aligned with the line-of-sight the fraction of the weak lensing signal from mass external to the cluster can be twice that predicted if the excess halo alignment correlation is assumed to be zero.
 
 
Gravitino cosmology with a very light neutralino
Authors: Herbi K. Dreiner (Bonn), Marja Hanussek (Bonn), Jong-Soo Kim (Dortmund, Adelaide), Subir Sarkar (Oxford)
 It has been shown that very light or even massless neutralinos are consistent with all current experiments, given non-universal gaugino masses. Furthermore, a very light neutralino is consistent with astrophysical bounds from supernov{\ae} and cosmological bounds on dark matter. Here we study the cosmological constraints on this scenario from Big Bang nucleosynthesis taking gravitinos into account and find that a very light neutralino is even favoured by current observations.
 

Friday, November 25, 2011

arXiv: 24 November 2011

 The polytropic approximation and X-ray scaling relations: constraints on gas and dark matter profiles for galaxy groups and clusters
 We constrain gas and dark matter (DM) parameters of galaxy groups and clusters, by comparing X-ray scaling relations to theoretical expectations, obtained assuming that the gas is in hydrostatic equilibrium with the DM and follows a polytropic relation. We vary four parameters: the gas polytropic index Gamma, its temperature at large radii T_xi, the DM logarithmic slope at large radii zeta and its concentration c_vir. When comparing the model to the observed mass-temperature (M-T) relation of local clusters, our results are independent of both T_xi and c_vir. We thus obtain constraints on Gamma, by fixing the DM profile, and on zeta, by fixing the gas profile. For an NFW DM profile, we find that 6/5<Gamma<13/10, which is consistent with numerical simulations and observations of individual clusters. Taking 6/5<Gamma<13/10 allows the DM profile to be slightly steeper than the NFW profile at large radii. Upon including local groups, we constrain the mass-dependence of Gamma and the value of T_xi. Interestingly, with Gamma=6/5 and zeta=-3, we reproduce the observed steepening/breaking of the M-T relation at low M, if 10^6 K<T_xi<10^7 K, consistent with simulations and observations of the warm-hot intergalactic medium. When extrapolated to high redshift z, the model with a constant Gamma reproduces the expected self-similar behaviour. We also account for the observed, non-self-similar relations provided by some high-z clusters, as they provide constraints on the evolution of Gamma. Comparing our model to the observed luminosity-temperature relation, we discriminate between different M-c_vir relations: a weak dependence of c_vir on M is currently preferred by data. This simple theoretical model accounts for much of the complexity of recent, improved X-ray scaling relations, provided that we allow for a mild dependence of Gamma on M or for T_xi consistent with intercluster values. [abridged]
 
 

arXiv: 23 November 2011

 Axions in Cold Dark Matter and Inflation Models
 The subjects of this thesis are the invisible axion and the more general family of axion-like particles.
The invisible axion is a hypothetical elementary particle and a cold dark matter candidate. I present an improved computation of the constraints on the parameter space of the cold dark matter axion in the standard cosmology, that includes the contributions from anharmonicities in the axion potential and from the decay of axionic strings. In this scenario, I update the value of the mass of the cold dark matter axion, finding the value $(67\pm17){\rm \mu eV}$, approximately one order of magnitude larger than previous computations.
The effect of nonstandard cosmological scenarios on the parameter space of axion cold dark matter is studied for the first time. In particular, I consider the cases of low-temperature reheating and kination cosmologies, and I show that the mass of the cold dark matter axion can differ from the value in the standard cosmological scenario by orders of magnitude.
Finally, I consider the family of axion-like particles, assuming that these particles serve as the inflaton in the context of warm inflation. I find that the axion energy scale $f$, which in the standard inflation scenario is of the order of the Planck mass, can be lowered to the much safer Grand Unification Theory scale $f \sim 10^{16}{\rm GeV}$. I also constrain the parameter space and the amount of gravitational waves from this model, using results from the Wilkinson Microwave Anisotropy Probe 7-year data.
 
Cross-correlating Sunyaev-Zel'dovich and Weak Lensing Maps
 We present novel statistical tools to cross-correlate frequency cleaned thermal Sunyaev-Zel'dovich (tSZ) maps and tomographic weak lensing (wl) convergence maps. Moving beyond the lowest order cross-correlation, we introduce a hierarchy of mixed higher-order statistics, the cumulants and cumulant correlators, to analyze non-Gaussianity in real space, as well as corresponding polyspectra in the harmonic domain. Using these moments, we derive analytical expressions for the joint two-point probability distribution function (2PDF) for smoothed tSZ (y_s) and convergence (\kappa_s) maps. The presence of tomographic information allows us to study the evolution of higher order {\em mixed} tSZ-weak lensing statistics with redshift. We express the joint PDFs p_{\kappa y}(\kappa_s,y_s) in terms of individual one-point PDFs (p_{\kappa}(\kappa_s), p_y(y_s)) and the relevant bias functions (b_{\kappa}(\kappa_s), b_y(y_s)). Analytical results for two different regimes are presented that correspond to the small and large angular smoothing scales. Results are also obtained for corresponding {\em hot spots} in the tSZ and convergence maps. In addition to results based on hierarchical techniques and perturbative methods, we present results of calculations based on the lognormal approximation. The analytical expressions derived here are generic and applicable to cross-correlation studies of arbitrary tracers of large scale structure including e.g. that of tSZ and soft X-ray background.
 
 

arXiv: 22 November 2011

 One Gravitational Potential or Two? Forecasts and Tests
 The metric of a perturbed Robertson-Walker spacetime is characterized by three functions: a scale-factor giving the expansion history and two potentials which generalize the single potential of Newtonian gravity. The Newtonian potential induces peculiar velocities and, from these, the growth of matter fluctuations. Massless particles respond equally to the Newtonian potential and to a curvature potential. The difference of the two potentials, called the gravitational slip, is predicted to be very small in general relativity but can be substantial in modified gravity theories. The two potentials can be measured, and gravity tested on cosmological scales, by combining weak gravitational lensing or the Integrated Sachs-Wolfe effect with galaxy peculiar velocities or clustering.
 
An improved fitting formula for the dark matter bispectrum
 In this paper we present an improved fitting formula for the dark matter bispectrum motivated by the previous phenomenological approach of Scoccimarro & Couchman (2001). We use a set of LCDM simulations to calibrate the fitting parameters in the k-range of 0.03 h/Mpc<k<0.4 h/Mpc and in the redshift range of 0<z<1.5. This new proposed fit describes well the BAO-features although it was not designed to. The deviation between the simulations output and our analytic prediction is typically less than 5% and in the worst case is never above 10%. We envision that this new analytic fitting formula will be very useful in providing reliable predictions for the non-linear dark matter bispectrum for LCDM models.
 
 

arXiv: 21 November 2011

 Straightening the Density-Displacement Relation with a Logarithmic Transform
We investigate the use of a logarithmic density variable in estimating the Lagrangian displacement field, motivated by the success of a logarithmic transformation in restoring information to the matter power spectrum. The logarithmic relation is an extension of the linear relation, motivated by the continuity equation, in which the density field is assumed to be proportional to the divergence of the displacement field; we compare the linear and logarithmic relations by measuring both of these fields directly in a cosmological N-body simulation. The relative success of the logarithmic and linear relations depends on the scale at which the density field is smoothed. Thus we explore several ways of measuring the density field, including Cloud-In-Cell smoothing, adaptive smoothing, and the (scale-independent) Delaunay tessellation, and we use both a Fourier space and a geometrical tessellation approach to measuring the divergence. We find that the relation between the divergence of the displacement field and the density is significantly tighter with a logarithmic density variable, especially at low redshifts and for very small (~2 Mpc/h) smoothing scales. We find that the grid-based methods are more reliable than the tessellation-based method of calculating both the density and the divergence fields, though in both cases the logarithmic relation works better in the appropriate regime, which corresponds to nonlinear scales for the grid-based methods and low densities for the tessellation-based method.
 
 Detection of branon dark matter with gamma ray telescopes
 Branons are new degrees of freedom that appear in flexible brane-world models corresponding to brane fluctuations. These new fields can behave as standard weakly interacting massive particles (WIMPs) with a significant associated thermal relic density. We analyze the present constraints from their spontaneous annihilations into photons for EGRET, Fermi-LAT and MAGIC, and the prospects for detection in future Cherenkov telescopes. In particular, we focus on possible signals coming from the Galactic Center and different dwarf spheroidals, such as Draco, Sagittarius, Canis Major and SEGUE 1. We conclude that for those targets, present observations are below the sensitivity limits for branon detection by assuming standard dark matter distributions and no additional boost factors. However, future experiments such as CTA could be able to detect gamma-ray photons coming from the annihilation of branons with masses higher than 150 GeV.
 
 Limits on Self-Interacting Dark Matter
We impose new severe constraints on the self-interactions of fermionic asymmetric dark matter based on observations of nearby old neutron stars. WIMP self-interactions mediated by Yukawa- type interactions can lower significantly the number of WIMPs necessary for gravitational collapse of the WIMP population accumulated in a neutron star. Even nearby neutron stars located at regions of low dark matter density can accrete sufficient number of WIMPs that can potentially collapse, form a mini black hole, and destroy the host star. Based on this, we derive constraints on the WIMP self-interactions which in some cases are by several orders of magnitude stricter than the ones from the bullet cluster (which are currently considered the most stringent).
 
 NGC 2419 does not challenge MOND, Part 2
Authors: R.H. Sanders
 I argue that, despite repeated claims of Ibata et al., the globular cluster NGC 2419 does not pose a problem for modified Newtonian dynamics (MOND). I present a new polytropic model with a running polytropic index. This model provides an improved representation of the radial distribution of surface brightness while maintaining a reasonable fit to the velocity dispersion profile. Although it may be argued that the differences with these observations remain large compared to the reported random errors, there are several undetectable systematic effects which render a formal likelihood analysis irrelevant. I comment generally upon these effects and upon the intrinsic limitations of pressure supported objects as tests of gravity.

Thursday, November 24, 2011

arXiv: 17 November 2011

Tracing the Dark Matter Sheet in Phase Space
Authors: Tom Abel, Oliver Hahn, Ralf Kaehler (KIPAC/Stanford/SLAC)
The primordial dark matter velocity dispersion is small compared to the velocities attained during structure formation. Its initial density distribution is close to uniform and it occupies an initial sheet in phase space that is single valued in velocity space. Because of gravitational forces this three dimensional manifold evolves in phase space without ever tearing, conserving phase-space volume and preserving the connectivity of nearby points. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space-structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured three dimensional mesh, moving in six dimensional phase-space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, detect caustics, and count the number of streams as well as their individual contributions to any point in configuration-space. We calculate the bulk velocity, local velocity dispersions, and densities from the sheet - all without averaging over control volumes. This gives a wealth of new information about dark matter fluid flow which had previously been thought of as inaccessible to N-body simulations. We outline how this mapping may be used to create new accurate collisionless fluid simulation codes that may be able to overcome the sparse sampling and unphysical two-body effects that plague current N-body techniques.
 
 Constraining Dynamical Dark Energy Models through the Abundance of High-Redshift Supermassive Black Holes
We compute the number density of massive Black Holes (BHs) at the centre of galaxies at z=6 in different Dynamical Dark Energy (DDE) cosmologies, and compare it with existing observational lower limits, to derive constraints on the evolution of the Dark Energy equation of state parameter w. Our approach only assumes the canonical scenario for structure formation from the collapse of overdense regions of the Dark Matter dominated primordial density field on progressively larger scales; the Black Hole accretion and merging rate have been maximized in the computation so as to obtain robust constraints on w and on its look-back time derivative w_a. Our results provide independent constraints complementary to those obtained by combining Supernovae, Cosmic Microwave Background and Baryonic Acoustic Oscillations; while the latter concern combinations of w_0 and w_a leaving the time evolution of the state parameter w_a highly unconstrained, the BH abundance mainly provide upper limits on w_a, only weakly depending on w_0. Combined with the existing constraints, our results significantly restrict the allowed region in DDE parameter space, ruling out DDE models not providing cosmic time and fast growth factor large enough to allow for the building up of the observed abundance of BHs; in particular, models with -1.2 \leq w_0 \leq -1 and positive redshift evolution w_a > 0.8 - completely consistent with previous constraints - are strongly disfavoured by our independent constraints from BH abundance. Such range of parameters corresponds to "Quintom" DDE models, with w crossing -1 starting from larger values
 
 Magnification by Galaxy Group Dark Matter Halos
We report on the detection of gravitational lensing magnification by a population of low-mass galaxy groups, at a significance level of 4.8 sigma. Using X-ray selected groups in the COSMOS 1.64 deg^2 field, and high-redshift Lyman-break galaxies as sources, we measure a lensing induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally-weighted cross-correlation function to further boost the signal-to-noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We find that the group mass profiles are well fit by the Singular Isothermal Sphere (SIS) model, and we implement a multi-SIS fit that recovers a distribution of lens masses consistent with the values that have already been well measured using the weak lensing shear technique. We argue that future weak lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.
 
 

Monday, November 21, 2011

arXiv: 15 November 2011

 Power Spectrum Estimation from Peculiar Velocity Catalogues
 The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
 
Chameleon Effects on Small Scale Structure and the Baryonic Jeans Mass
 In the framework of Newtonian cosmology or general relativity it is simple to derive a mass scale below which collapsed structures are relatively devoid of baryons. We examine how the inclusion of a chameleon scalar field affects this baryonic Jeans mass, bearing in mind both the canonical case of a gravitational-strength coupling between the scalar field and matter, as well as the strong coupling regime wherein the coupling is very large. We find that baryon effects persist down to smaller scales in a chameleon theory than they do in ordinary general relativity, especially in the case of strong coupling. Several potentially observable consequences of this are identified.
 
The effects of baryons on the halo mass function
 We present an analysis of the effects of baryon physics on the halo mass function. The analysis is based on simulations of a cosmological volume. Besides a Dark Matter (DM) only simulation, we also carry out two other hydrodynamical simulations. We identified halos using a spherical overdensity algorithm and their masses are computed at three different overdensities (with respect to the critical one), $\Delta_c=200$, 500 and 1500. We find the fractional difference between halo masses in the hydrodynamical and in the DM simulations to be almost constant, at least for halos more massive than $\log (M_{\Delta_c} / \hMsun)\geq 13.5$. In this range, mass increase in the hydrodynamical simulations is of about 4-5 per cent at $\Delta_c=500$ and $\sim 1$ - 2 per cent at $\Delta_c=200$. Quite interestingly, these differences are nearly the same for both radiative and non-radiative simulations. Such variations of halo masses induce corresponding variations of the halo mass function (HMF). At $z=0$, the HMFs for GH and CSF simulations are close to the DM one, with differences of $\mincir 3$ per cent at $\Delta_c = 200$, and $\simeq 7$ per cent at $\Delta_c=500$, with $\sim 10$ - 20 per cent differences reached at $\Delta_c = 1500$. At this higher overdensity, the increase of the HMF for the radiative case is larger by about a factor 2 with respect to the non--radiative case. Assuming a constant mass shift to rescale the HMF from the hydrodynamic to the DM simulations, brings the HMF difference with respect to the DM case to be consistent with zero. Our results have interesting implications to bracket uncertainties in the mass function calibration associated to the uncertain baryon physics, in view of cosmological applications of future large surveys of galaxy clusters. (Abridged)
 
 Search for Unknown Dark Matter Satellites of the Milky Way
We present a search for Galactic dark matter (DM) satellites using the Large Area Telescope (LAT). N-body simulations based on the Lambda-CDM model of cosmology predict a large number of as yet unobserved Galactic DM satellites. These satellites could potentially produce gamma rays through the self-annihilation of DM particles. Some DM satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We searched for LAT sources with these characteristics. We found no candidate DM satellites matching these criteria in one year of LAT data and interpreted this result in the context of N-body simulations.
 
 
 Newtonian and Relativistic Cosmologies
Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic FLRW cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed, which allows for such nonlinearity at small scales. We propose a relatively straightforward "dictionary"---which is exact at the linearized level---that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our "ordering scheme" to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We find that Einstein's equation fails to hold at "order 1" at small scales and at "order $\epsilon$" at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein's equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe relativistic cosmologies, even on scales larger than the Hubble radius.
 
Universality of the Volume Bound in Slow-Roll Eternal Inflation
It has recently been shown that in single field slow-roll inflation the total volume cannot grow by a factor larger than e^(S_dS/2) without becoming infinite. The bound is saturated exactly at the phase transition to eternal inflation where the probability to produce infinite volume becomes non zero. We show that the bound holds sharply also in any space-time dimensions, when arbitrary higher-dimensional operators are included and in the multi-field inflationary case. The relation with the entropy of de Sitter and the universality of the bound strengthen the case for a deeper holographic interpretation. As a spin-off we provide the formalism to compute the probability distribution of the volume after inflation for generic multi-field models, which might help to address questions about the population of vacua of the landscape during slow-roll inflation.
 
 
 

Monday, November 14, 2011

arXiv: 14 Novemebr 2011

 Physics of Dark Matter in the Light of Dark Atoms
 Direct searches for dark matter lead to serious problems for simple models with stable neutral Weakly Interacting Massive Particles (WIMPs) as candidates for dark matter. A possibility is discussed that new stable quarks and charged leptons exist and are hidden from detection, being bound in neutral dark atoms of composite dark matter. Stable -2 charged particles $O^{--}$ are bound with primordial helium in O-helium (OHe) atoms, being specific nuclear interacting form of composite Warmer than Cold dark matter. Slowed down in the terrestrial matter, OHe is elusive for direct methods of underground dark matter detection based on the search for effects of nuclear recoil in WIMP-nucleus collisions. The positive results of DAMA experiments can be explained as annual modulation of radiative capture of O-helium by nuclei. In the framework of this approach test of DAMA results in detectors with other chemical content becomes a nontrivial task, while the experimental search of stable charged particles at LHC or in cosmic rays acquires a meaning of direct test for composite dark matter scenario.
 
 The Cosmic Abundance of Classical Milky Way Satellites
We study the abundance of satellites akin to the brightest, classical dwarf spheroidals around galaxies similar in magnitude and isolation to the Milky Way and M31 in the Sloan Digital Sky Survey. From a combination of photometric and spectroscopic redshifts, we bound the mean and the intrinsic scatter in the number of satellites down to ten magnitudes fainter than the Milky Way. Restricting to magnitudes brighter than Sagittarius, we show that the Milky Way is not a significant statistical outlier in its population of classical dwarf spheroidals. At fainter magnitudes, we find an upper limit of 13 on the mean number of satellites brighter than the Fornax dwarf spheroidal. Methods to improve these limits that utilize full photometric redshift distributions hold promise, but are currently limited by incompleteness at the very lowest redshifts. Theoretical models are left to explain why the majority of dark matter subhalos that orbit Milky Way-like galaxies are inefficient at making galaxies at the luminosity scale of the brightest dwarf spheroidals, or why these subhalos predicted by Lambda-CDM do not exist.
 
 Halos and Voids in f(R) Gravity
Authors: Baojiu Li (Durham and Cambridge), Gong-Bo Zhao (Portsmouth), Kazuya Koyama (Portsmouth)
 In this paper, we study the distribution of dark matter halos and voids using high resolution simulations in f(R) gravity models with the chameleon mechanism to screen the fifth force in dense environment. For dark matter halos, we show that the semi-analytic thin shell condition, with a suitably-defined environment, provides a good approximation to describe the mass and environmental dependence of the screening of the fifth force in halos. Due to stronger gravity, there are far more massive halos and large voids in f(R) models compared with the \Lambda CDM model. The numbers of voids with an effective radius of 15Mpc/h are twice and four times as many as those in \Lambda CDM for f(R) models with |f_{R0}|=1e-5 and 1e-4 respectively. This provides a new means to test the models using the upcoming observational data. We also find that halos inside voids are all unscreened in our simulations, which are ideal objects for the gravity test.
 
 Searching For Dark Matter Subhalos In the Fermi-LAT Second Source Catalog
 The dark matter halo of the Milky Way is expected to contain an abundance of smaller subhalos. These subhalos can be dense and produce potentially observable fluxes of gamma rays. In this paper, we search for dark matter subhalo candidates among the sources in the Fermi-LAT Second Source Catalog which are not currently identified or associated with counterparts at other wavelengths. Of the nine high-significance, high-latitude (|b|>60 degrees), non-variable, unidentified sources contained in this catalog, only one or two are compatible with the spectrum of a dark matter particle heavier than approximately 50-100 GeV. The majority of these nine sources, however, feature a spectrum that is compatible with that predicted from a lighter (~5-40 GeV) dark matter particle. This population is consistent with the number of observable subhalos predicted for a dark matter candidate in this mass range and with an annihilation cross section of a simple thermal relic (sigma v~3x10^{-26} cm^3/s). Observations in the direction of these sources at other wavelengths will be necessary to either reveal their astrophysical nature (as blazars or other active galactic nuclei, for example), or to further support the possibility that they are dark matter subhalos by failing to detect any non-gamma ray counterpart.
 
 

Sunday, November 13, 2011

arXiv: 11 November 2011

 The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations
 Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in addition to the dominant adiabatic mode. We find that non-adiabatic initial conditions leave the sound speed unchanged but instead excite different harmonics. These harmonics couple differently to Silk damping, altering the form and evolution of acoustic waves in the baryon-photon fluid prior to decoupling. This modifies not only the scale on which the sound waves imprint onto the baryon distribution, which is used as the standard ruler in BAO surveys, but also the shape, width and height of the BAO peak. We discuss these effects in detail and show how more general initial conditions impact our interpretation of cosmological data in dark energy studies. We find that the inclusion of these additional isocurvature modes leads to an increase in the Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT experiments respectively when considered in conjunction with Planck data. We also show that the incorrect assumption of adiabaticity has the potential to bias our estimates of the dark energy parameters by $3\sigma$ ($1\sigma$) for a single correlated isocurvature mode, and up to $8\sigma$ ($3\sigma$) for three correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We find that the use of the large scale structure data in conjunction with CMB data improves our ability to measure the contributions of different modes to the initial conditions by as much as 100% for certain modes in the fully correlated case.
 
 

arXiv: 10 November 2011

 Dark matter seeding and the kinematics and rotation of neutron stars
Self-annihilation of dark matter accreted from the galactic halo in the inner regions of neutron stars may affect their kinematical properties, namely velocity kicks and rotation patterns. We find that if a stable long-lived single or multiple strangelet off-center seed forms, there is an associated change in momentum and torque that may affect the kinematical observables of the star.
 
 Observational Constraints on the Averaged Universe
 Averaging in general relativity is a complicated operation, due to the general covariance of the theory and the non-linearity of Einstein's equations. The latter of these ensures that smoothing spacetime over cosmological scales does not yield the same result as solving Einstein's equations with a smooth matter distribution, and that the smooth models we fit to observations need not be simply related to the actual geometry of spacetime. One specific consequence of this is a decoupling of the geometrical spatial curvature term in the metric from the dynamical spatial curvature in the Friedmann equation. Here we investigate the consequences of this decoupling by fitting to a combination of HST, CMB, SNIa and BAO data sets. We find that only the geometrical spatial curvature is tightly constrained, and that our ability to constrain dark energy dynamics will be severely impaired until we gain a thorough understanding of the averaging problem in cosmology.
 
 The Milky Way's bright satellites as an apparent failure of LCDM
 We use the Aquarius simulations to show that the most massive subhalos in galaxy-mass dark matter halos in LCDM are grossly inconsistent with the dynamics of the brightest Milky Way dwarf spheroidal galaxies. While the best-fitting hosts of the dwarf spheroidals all have 12 < Vmax < 25 km/s, LCDM simulations predict at least ten subhalos with Vmax > 25 km/s. These subhalos are also among the most massive at earlier times, and significantly exceed the UV suppression mass back to z ~ 10. No LCDM-based model of the satellite population of the Milky Way explains this result. The problem lies in the satellites' densities: it is straightforward to match the observed Milky Way luminosity function, but doing so requires the dwarf spheroidals to have dark matter halos that are a factor of ~5 more massive than is observed. Independent of the difficulty in explaining the absence of these dense, massive subhalos, there is a basic tension between the derived properties of the bright Milky Way dwarf spheroidals and LCDM expectations. The inferred infall masses of these galaxies are all approximately equal and are much lower than standard LCDM predictions for systems with their luminosities. Consequently, their implied star formation efficiencies span over two orders of magnitude, from 0.2% to 20% of baryons converted into stars, in stark contrast with expectations gleaned from more massive galaxies. We explore possible solutions to these problems within the context of LCDM and find them to be unconvincing. In particular, we use controlled simulations to demonstrate that the small stellar masses of the bright dwarf spheroidals make supernova feedback an unlikely explanation for their low inferred densities.
 
 

Wednesday, November 9, 2011

arXiv: 9 November 2011

 Power spectrum for the Bose-Einstein condensate dark matter
We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo- Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15meV < m < 700meV leading to a small, but perceptible, excess of power at large scales.
Cluster Density Profiles as a Test of Modified Gravity
We present a new test of gravitational interactions at the r\simeq(0.2-20)Mpc scale, around the virial radius of dark matter halos measured through cluster-galaxy lensing of maxBCG clusters from the Sloan Digital Sky Survey (SDSS). We employ predictions from self-consistent simulations of f(R) gravity to find an upper bound on the background field amplitude of f_R0<3.5x10^-3 at the 1D-marginalized 95% confidence level. We also constrain the amplitude F_0 of a phenomenological fit modeled on the profile enhancement induced by f(R) gravity when not including effects from the increased cluster abundance in f(R). In both scenarios, dark-matter-only simulations of the concordance model corresponding to f_R0=0 and F_0=0 are consistent with the lensing measurements at the 68% confidence level.
Supernova Simulations and Strategies For the Dark Energy Survey
We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 square degree search area in the griz filter set. We forecast 1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05<z<1.2, and 2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.
Statistics of Substructures in Dark Matter Haloes
We study the amount and distribution of dark matter substructures within dark matter haloes, using a large set of high-resolution simulations ranging from group size to cluster size haloes, and carried our within a cosmological model consistent with WMAP 7-year data. In particular, we study how the measured properties of subhaloes vary as a function of the parent halo mass, the physical properties of the parent halo, and redshift. The fraction of halo mass in substructures increases with increasing mass. There is, however, a very large halo-to-halo scatter that can be explained only in part by a range of halo physical properties, e.g. concentration. At given halo mass, less concentrated haloes contain significantly larger fractions of mass in substructures because of the reduced strength of tidal disruption. Most of the substructure mass is located at the outskirts of the parent haloes, in relatively few massive subhaloes. This mass segregation appears to become stronger at increasing redshift, and should reflect into a more significant mass segregation of the galaxy population at different cosmic epochs. When haloes are accreted onto larger structures, their mass is significantly reduced by tidal stripping. Haloes that are more massive at the time of accretion (these should host more luminous galaxies) are brought closer to the centre on shorter time-scales by dynamical friction, and therefore suffer of a more significant stripping. The halo merger rate depends strongly on the environment with substructure in more massive haloes suffering more important mergers than their counterparts residing in less massive systems. This should translate into a different morphological mix for haloes of different mass.
Optimizing future dark energy surveys for model selection goals
We demonstrate a methodology for optimizing the ability of future dark energy surveys to answer model selection questions, such as `Is acceleration due to a cosmological constant or a dynamical dark energy model?'. Model selection Figures of Merit are defined, exploiting the Bayes factor, and surveys optimized over their design parameter space via a Monte Carlo method. As a specific example we apply our methods to generic multi-fibre baryon acoustic oscillation spectroscopic surveys, comparable to that proposed for SuMIRe PFS, and present implementations based on the Savage-Dickey Density Ratio that are both accurate and practical for use in optimization. It is shown that whilst the optimal surveys using model selection agree with those found using the Dark Energy Task Force (DETF) Figure of Merit, they provide better informed flexibility of survey configuration and an absolute scale for performance; for example, we find survey configurations with close to optimal model selection performance despite their corresponding DETF Figure of Merit being at only 50% of its maximum. This Bayes factor approach allows us to interpret the survey configurations that will be good enough for the task at hand, vital especially when wanting to add extra science goals and in dealing with time restrictions or multiple probes within the same project.
Beyond the power spectrum: primordial and secondary non-Gaussianity in the microwave background
Authors: Kendrick M. Smith (Princeton)
Cosmic microwave background observations are most commonly analyzed by estimating the power spectrum. In the limit where the CMB statistics are perfectly Gaussian, this extracts all the information, but the CMB also contains detectable non-Gaussian contributions from secondary, and possibly primordial, sources. We review possible sources of CMB non-Gaussianity and describe statistical techniques which are optimized for measuring them, complementing the power spectrum analysis. The machinery of $N$-point correlation functions provides a unifying framework for optimal estimation of primordial non-Gaussian signals or gravitational lensing. We review recent results from applying these estimators to data from the WMAP satellite mission.

arXiv: 8 November 2011

MOND--particularly as modified inertia
After a succinct review of the MOND paradigm--with its phenomenology, and its various underlying theories--I concentrate on so called modified inertia (MI) formulations of MOND, which have so far received only little attention. These share with all MOND theories the salient MOND predictions, such as asymptotically flat rotation curves, and the universal mass-asymptotic-speed relation. My emphasis here is, however, on the fact that MI theories can differ substantially from their "modified-gravity" (MG) kin in predicting other phenomena. Because MI theories are non local in time, MOND effects depend on the full trajectory of a system, not only on its instantaneous state, as in MG theories. This may lead to rather different predictions for, e.g., the external-field effect (EFE): A subsystem, such as a globular cluster or a dwarf galaxy, moving in the field of a mother galaxy, or a galaxy in a cluster, may be subject to an EFE that depends on the accelerations all along its orbit, not only on the instantaneous value. And, it is even possible to construct MI theories with practically no EFE. Other predictions that may differ are also discussed. Since we do not yet have a full fledged, modified-inertia formulation, simple, heuristic models have been used to demonstrate these points.
 
 Structure formation in cosmologies with oscillating dark energy
 {abridged} We study the imprints on the formation and evolution of cosmic structures of dynamical dark energy models, characterized by an oscillating equation of state. The redshift evolution of the equation of state parameter w(z) for dark energy is characterized by two parameters, describing the amplitude and the frequency of the oscillations. We consider six different oscillating dark energy models, each characterized by a different set of parameter values. Under the common assumption that dark energy is not clustering on the scales of interest, we study different aspects of cosmic structure formation. In particular, we self-consistently solve the spherical collapse problem. We then estimate the behavior of several cosmological observables, such as the linear growth factor, the Integrated Sachs-Wolfe (ISW) effect, the number counts of massive structures, and the matter and cosmic shear power spectra. We show that, independently of the amplitude and the frequency of the dark energy oscillations, none of the aforementioned observables show an oscillating behavior as a function of redshift. This is a consequence of the said observables' being integrals over some functions of the expansion rate over cosmic history. We also notice that deviations with respect to the expectations for a fiducial LambdaCDM cosmology are generically small, and in the majority of the cases distinguishing an oscillating dark energy model would be difficult. Exceptions to this conclusion are provided by the cosmic shear power spectrum, which for some of the models shows a difference at the level of \sim 10% over a wide range of angular scales, and the abundance of galaxy clusters, which is modified at the $\sim 10-20%$ level at $z \gtrsim 0.6$ for future wide weak lensing surveys.
 
 A WDM model for the evolution of galactic halos
Authors: L. Acedo
 It is a well-known fact that the gravitational effect of dark matter in galaxies is only noticeable when the orbital accelerations drop below $a_0 \simeq 2\times 10^{-8}$ cm s$^{-1}$ (Milgrom's Law). This peculiarity of the dynamic behaviour of galaxies was initially ascribed to a modification of Newtonian dynamics (MOND theory) and, consequently, it was used as an argument to criticize the dark matter hypothesis. In our model, warm dark matter is composed by collisionless Vlasov particles with a primordial typical velocity $\simeq 330$ km s$^{-1}$ and, consequently, they evaporated from galactic cores and reorganized in halos with a cusp at a finite distance from the galactic center (in contrast with Cold Dark Matter simulations which predict a cusp at the center of galaxies). This is confirmed by mean-field N-body simulations of the self-gravitating Vlasov dark matter particles in the potential well of the baryonic core. The rest mass of these particles, $\mu$, is determined from a kinetic theory of the early universe with a cosmological constant. We find that $\mu$ is in the range of a few keV. This result makes sterile neutrinos the best suited candidates for the main component of dark matter.
 
 Why Are AGN and Host Galaxies Misaligned?
Authors: Philip F. Hopkins (Berkeley), Lars Hernquist (Harvard), Christopher C. Hayward (Harvard), Desika Narayanan (Arizona)
 It is well-established observationally that the characteristic angular momentum axis on small scales around AGN, traced by radio jets and the putative torus, is not well-correlated with the large-scale angular momentum axis of the host galaxy. In this paper, we show that such misalignments arise naturally in high-resolution simulations in which we follow angular momentum transport and inflows from galaxy to sub-pc scales near AGN, triggered either during galaxy mergers or by instabilities in isolated disks. Sudden misalignments can sometimes be caused by single massive clumps falling into the center slightly off-axis, but more generally, they arise even when the gas inflows are smooth and trace only global gravitational instabilities. When several nested, self-gravitating modes are present, the inner ones can precess and tumble in the potential of the outer modes. Resonant angular momentum exchange can flip or re-align the spin of an inner mode on a short timescale, even without the presence of massive clumps. We therefore do not expect that AGN and their host galaxies will be preferentially aligned, nor should the relative alignment be an indicator of the AGN fueling mechanism. We discuss implications of this conclusion for AGN feedback and BH spin evolution. The misalignments imply that even BHs accreting from a smooth large-scale disk at near-Eddington will not be spun up to maximal rotation, but to moderate values of angular momentum |a|~0.3-0.9. This corresponds to a narrow range in radiative efficiencies epsilon_r~0.1, and relatively inefficient jet formation at high Eddington ratio. Even lower spins are possible if there is further, un-resolved clumpiness and misalignment and higher spins occur if the accretion is slower, from material that is not self-gravitating.
 
 

arXiv: 7 Novemeber 2011

Testing Cosmology with Extreme Galaxy Clusters
Motivated by recent suggestions that a number of observed galaxy clusters have masses which are too high for their given redshift to occur naturally in a standard model cosmology, we use Extreme Value Statistics to construct confidence regions in the mass-redshift plane for the most extreme objects expected in the universe. We show how such a diagram not only provides a way of potentially ruling out the concordance cosmology, but also allows us to differentiate between alternative models of enhanced structure formation. We compare our theoretical prediction with observations, placing currently observed high and low redshift clusters on a mass-redshift diagram and find -- provided we consider the full sky to avoid a posteriori selection effects -- that none are in significant tension with concordance cosmology.
 
Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws
Kinematic surveys of the dwarf spheroidal (dSph) satellites of the Milky Way are revealing tantalising hints about the structure of dark matter (DM) haloes at the low-mass end of the galaxy luminosity function. At the bright end, modelling of spiral galaxies has shown that their rotation curves are consistent with the hypothesis of a Universal Rotation Curve whose shape is supported by a cored dark matter halo. In this paper, we investigate whether the internal kinematics of the Milky Way dSphs are consistent with the particular cored DM distributions which reproduce the properties of spiral galaxies. Although the DM densities in dSphs are typically almost two orders of magnitude higher than those found in (larger) disk systems, we find consistency between dSph kinematics and Burkert DM haloes whose core radii r0 and central densities {\rho}0 lie on the extrapolation of the scaling law seen in spiral galaxies: log {\rho}0 \simeq {\alpha} log r0 + const with 0.9 < {\alpha} < 1.1. We similarly find that the dSph data are consistent with the relation between {\rho}0 and baryon scale length seen in spiral galaxies. While the origin of these scaling relations is unclear, the finding that a single DM halo profile is consistent with kinematic data in galaxies of widely varying size, luminosity and Hubble Type is important for our understanding of observed galaxies and must be accounted for in models of galaxy formation.
 
 Constraints on Modified Gravity from Sunyaev-Zeldovich Cluster Surveys
 We investigate the constraining power of current and future Sunyaev-Zeldovich cluster surveys on the f(R) gravity model. We use a Fisher matrix approach, adopt self-calibration for the mass- observable scaling relation, and evaluate constraints for the SPT, Planck, SPTPol and ACTPol surveys. The modified gravity effects on the mass function, halo bias, matter power spectrum, and mass-observable relation are taken into account. We show that, relying on number counts only, the Planck cluster catalog is expected to reduce current upper limits by about a factor of four, to {\sigma}fR0 = 3 {\times} 10-5 (68% confidence level). Adding the cluster power spectrum further improves the constraints to {\sigma}fR0 = 10-5 for SPT and Planck, and {\sigma}fR0 = 3 {\times} 10-6 for SPTPol, pushing cluster constraints significantly beyond the limit where number counts have no constraining power due to the chameleon screening mechanism. Further, the combination of both observables breaks degeneracies, especially with the expansion history (effective dark energy density and equation of state). The constraints are only mildly worsened by the use of self-calibration but depend strongly on the mass threshold of the cluster samples.
 
 Probes of Lorentz Violation
Lorentz invariance is such an important principle of fundamental physics that it should constantly be subjected to experimental scrutiny as well as theoretical questioning. Distant astrophysical sources of energetic photons with rapid time variations, such as active galactic nuclei (AGNs) and gamma-ray bursters (GRBs), provide ideal experimental opportunities for testing Lorentz invariance. The Cherenkov Telescope Array (CTA) is an excellent experimental tool for making such tests with sensitivities exceeding those possible using other detectors.
 
 

arXiv: 4 November 2011

 A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations
 We present the first three-frequency South Pole Telescope (SPT) cosmic microwave background (CMB) power spectra. The band powers presented here cover angular scales 2000 < ell < 9400 in frequency bands centered at 95, 150, and 220 GHz. At these frequencies and angular scales, a combination of the primary CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio galaxies, and cosmic infrared background (CIB) contributes to the signal. We combine Planck and SPT data at 220 GHz to constrain the amplitude and shape of the CIB power spectrum and find strong evidence for non-linear clustering. We explore the SZ results using a variety of cosmological models for the CMB and CIB anisotropies and find them to be robust with one exception: allowing for spatial correlations between the thermal SZ effect and CIB significantly degrades the SZ constraints. Neglecting this potential correlation, we find the thermal SZ power at 150 GHz and ell = 3000 to be 3.65 +/- 0.69 muK^2, and set an upper limit on the kinetic SZ power to be less than 2.8 muK^2 at 95% confidence. When a correlation between the thermal SZ and CIB is allowed, we constrain a linear combination of thermal and kinetic SZ power: D_{3000}^{tSZ} + 0.5 D_{3000}^{kSZ} = 4.60 +/- 0.63 muK^2, consistent with earlier measurements. We use the measured thermal SZ power and an analytic, thermal SZ model calibrated with simulations to determine sigma8 = 0.807 +/- 0.016. Modeling uncertainties involving the astrophysics of the intracluster medium rather than the statistical uncertainty in the measured band powers are the dominant source of uncertainty on sigma8 . We also place an upper limit on the kinetic SZ power produced by patchy reionization; a companion paper uses these limits to constrain the reionization history of the Universe.
 
 Testing Multi-Field Inflation: A Geometric Approach
 We develop an approach for testing inflation models with multiple scalar fields by linking geometric and kinematical features of their inflationary Lagrangians to observable quantities like the power spectra, bispectrum, and trispectrum. Our approach also provides geometric intuition for when a complicated multi-field model can be well-approximated by a model with one, two, or a handful of fields. To arrive at these results, we focus on the mode interactions, simplify them using a novel result, and then explore how these interactions depend on the geometry of the inflationary Lagrangian and on the kinematics of the associated field trajectory. In the process, we introduce a multi-field observable \beta_2 that can potentially distinguish two-field scenarios from scenarios involving three or more effective fields. We also present a multi-field consistency relation, which involves the primordial bispectrum parameter f_{NL}, trispectrum parameter \tau_{NL}, and other spectral observables. These combined results provide better intuition into how features in multi-field inflationary Lagrangians translate into cosmic observables.
 
 The importance of the local density in shaping the galaxy stellar mass functions
Authors: Benedetta Vulcani (1,2), Bianca M. Poggianti (2), Giovanni Fasano (2), Vandana Desai (3), Alan Dressler (4), August Oemler Jr. (4), Rosa Calvi (1), Mauro D'Onofrio (1), Alessia Moretti (1,2) ((1) Astronomical Department, Padova University, Italy, (2) INAF-Astronomical Observatory of Padova, Italy, (3) Spitzer Science Center, California Institute of Technology, Pasadena, CA, USA, (4) Observatories of the Carnegie Institution of Science, Pasadena, CA, USA,)
 Exploiting the capabilities of four different surveys --- the Padova-Millennium Galaxy and Group Catalogue (PM2GC), the WIde-field Nearby Galaxy-cluster Survey (WINGS), the IMACS Cluster Building Survey (ICBS) and the ESO Distant Cluster Survey (EDisCS) --- we analyze the galaxy stellar mass distribution as a function of local density in mass-limited samples, in the field and in clusters from low (z>0.04) to high (z<0.8) redshift. We find that at all redshifts and in all environments, local density plays a role in shaping the mass distribution. In the field, it regulates the shape of the mass function at any mass above the mass limits. In clusters, it seems to be important only at low masses (log M_ast/M_sun <10.1 in WINGS and log M_ast/M_sun < 10.4 in EDisCS), otherwise it seems not to influence the mass distribution. Putting together our results with those of Calvi et al. and Vulcani et al. for the global environment, we argue that at least at $z\leq 0.8$ local density is more important than global environment in determining the galaxy stellar mass distribution, suggesting that galaxy properties are not much dependent of halo mass, but do depend on local scale processes.
 
Supersymmetry vis-à-vis Observation: Dark Matter Constraints, Global Fits and Statistical Issues
Authors: Yashar Akrami
 Weak-scale supersymmetry is one of the most favoured theories beyond the Standard Model of particle physics that elegantly solves various theoretical and observational problems in both particle physics and cosmology. In this thesis, I describe the theoretical foundations of supersymmetry, issues that it can address and concrete supersymmetric models that are widely used in phenomenological studies. I discuss how the predictions of supersymmetric models may be compared with observational data from both colliders and cosmology. I show why constraints on supersymmetric parameters by direct and indirect searches of particle dark matter are of particular interest in this respect. Gamma-ray observations of astrophysical sources, in particular dwarf spheroidal galaxies, by the Fermi satellite, and recording nuclear recoil events and energies by future ton-scale direct detection experiments are shown to provide powerful tools in searches for supersymmetric dark matter and estimating supersymmetric parameters. I discuss some major statistical issues in supersymmetric global fits to experimental data. In particular, I further demonstrate that existing advanced scanning techniques may fail in correctly mapping the statistical properties of the parameter spaces even for the simplest supersymmetric models. Complementary scanning methods based on Genetic Algorithms are proposed.
 
 Cosmic flows in the nearby universe from Type Ia Supernovae
 Peculiar velocities are one of the only probes of very large-scale mass density fluctuations in the nearby Universe. We present new "minimal variance" bulk flow measurements based upon the "First Amendment" compilation of 245 Type Ia supernovae (SNe) peculiar velocities and find a bulk flow of 249 +/- 76 km/s in the direction l= 319 +/- 18 deg, b = 7 +/- 14 deg. The SNe bulk flow is consistent with the expectations of \Lambda CDM. However, it is also marginally consistent with the bulk flow of a larger compilation of non-SNe peculiar velocities (Watkins, Feldman, & Hudson 2009). By comparing the SNe peculiar velocities to predictions of the IRAS Point Source Catalog Redshift survey (PSCz) galaxy density field, we find \Omega_{m}^{0.55} \sigma_{8,lin} = 0.40 +/- 0.07, which is in agreement with \Lambda CDM. However, we also show that the PSCz density field fails to account for 150 +/- 43 km/s of the SNe bulk motion.
 
 

arXiv: 3 November 2011

 Resolving astrophysical uncertainties in dark matter direct detection
We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large modulation fraction. However constraints from CDMS and XENON cannot be evaded by appealing to such astrophysical uncertainties alone.