Monday, January 31, 2011

arXiv: 31 January 2011

Does stellar mass assembly history vary with environment?

Using the publicly available VESPA database of SDSS Data Release 7 spectra, we calculate the stellar Mass Weighted Age (hereafter MWA) as a function of local galaxy density and dark matter halo mass. We compare our results with semi-analytic models from the public Millennium Simulation. We find that the stellar MWA has a large scatter which is inherent in the data and consistent with that seen in semi-analytic models. The stellar MWA is consistent with being independent (to first order) with local galaxy density, which is also seen in semi-analytic models. 
As a function of increasing dark matter halo mass (using the SDSS New York Value Added Group catalogues), we find that the average stellar MWA for member galaxies increases, which is again found in semi-analytic models. Furthermore we use public dark matter Mass Accretion History (MAH) code calibrated on simulations, to calculate the dark matter Mass Weighted Age as a function of dark matter halo mass. In agreement with earlier analyses, we find that the stellar MWA and the dark matter MWA are anti correlated for large mass halos, i.e, dark matter accretion does not seem to be the primary factor in determining when stellar mass was compiled. This effect can be described by down-sizing.

Prospects for Detecting Dark Matter Halo Substructure with Pulsar Timing

One of the open questions of modern cosmology is the nature and properties of the Dark Matter halo and its substructures. In this work we study the gravitational effect of dark matter substructures on pulsar timing observations. Since millisecond pulsars are stable and accurate emitters, they have been proposed as plausible astrophysical tools to probe the gravitational effects of dark matter structures. We study this effect on pulsar timing through Shapiro time delay (or Integrated Sachs-Wolfe (ISW) effect) and Doppler effects statistically, showing that the latter dominates the signal. For this task, we relate the power spectrum of pulsar frequency change to the matter power spectrum on small scales, which we compute using the stable clustering hypothesis. %We then investigate how changing the free parameters of the model, such as %minimum mass of sub-halos, the the mean fraction of bound particles %that can survive the tidal disruption period, and also the spectral %index of matter power spectrum, affect the pulsar timing . We compare this power spectrum with the reach of current and future observations of pulsar timing designed for gravitational wave (GW) detection. Our results show that while current observations are unable to detect these signals, the sensitivity of the upcoming Square Kilometer Array (SKA) is only a factor of few weaker than our optimistic predictions.

The Delay of Population III Star Formation by Supersonic Streaming Velocities

It has recently been demonstrated that coherent relative streaming velocities of order ~30 km/s between dark matter and gas permeated the Universe on scales below a few Mpc directly after recombination. We here use a series of high-resolution moving-mesh calculations to show that these supersonic motions significantly influence the virialization of the gas in minihalos, and delay the formation of the first stars. As the gas streams into minihalos with bulk velocities around 1 km/s at z ~ 20, the additional momentum and energy input reduces the baryon fractions and central densities of the halos, increasing the typical virial mass required for efficient cooling by a factor of three, and delaying Population~III star formation by dz ~ 4. Since the distribution of the magnitude of the streaming velocities is narrowly peaked around a non-negligible value, this effect is important in most regions of the Universe. As a consequence, the increased minimum halo mass implies a reduction of the absolute number of minihalos that can be expected to cool and form Population III stars by up to an order of magnitude. We further find that the streaming velocities increase the turbulent velocity dispersion of the minihalo gas, which could affect its ability to fragment and hence alter the mass function of the first stars.

Applications of Bayesian model averaging to the curvature and size of the Universe
M. Vardanyan (Oxford), R. Trotta (Imperial), J. Silk (Oxford)
Bayesian model averaging is a procedure to obtain parameter constraints that account for the uncertainty about the correct cosmological model. We use recent cosmological observations and Bayesian model averaging to derive tight limits on the curvature parameter, as well as robust lower bounds on the curvature radius of the Universe and its minimum size, while allowing for the possibility of an evolving dark energy component. Because flat models are favoured by Bayesian model selection, we find that model-averaged constraints on the curvature and size of the Universe can be considerably stronger than non model-averaged ones. For the most conservative prior choice (based on inflationary considerations), our procedure improves on non model-averaged constraints on the curvature by a factor of ~ 2. The curvature scale of the Universe is conservatively constrained to be R_c > 42 Gpc (99%), corresponding to a lower limit to the number of Hubble spheres in the Universe N_U > 251 (99%).



Friday, January 28, 2011

arXiv: 28 January 2011

Observational constraints on loop quantum cosmology

In the inflationary scenario of loop quantum cosmology (LQC) in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to confront with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background (CMB) and other cosmological experiments, we place bounds on the quantum corrections for a quadratic inflaton potential.

Introduction to dark matter experiments

R. W. Schnee (Syracuse University)
This is a set of four lectures presented at the Theoretical Advanced Study Institute (TASI-09) in June 2009. I provide an introduction to experiments designed to detect WIMP dark matter directly, focusing on building intuitive understanding of the characteristics of potential WIMP signals and the experimental techniques. After deriving the characteristics of potential signals in direct-detection experiments for standard WIMP models, I summarize the general experimental methods shared by most direct-detection experiments and review the advantages, challenges, and status of such searches (as of late 2009). Experiments are already probing SUSY models, with best limits on the spin-independent coupling below 10^-7 pb.

The exact analytical solution of the linear structure growth rate in LCDM cosmology and its cosmological applications

Pengjie Zhang (SHAO)
We derive the exact analytical solution of the linear structure growth rate in LCDM cosmology with flat or curved geometry, under the Newtonian gauge. Unlike the well known solution under the Newtonian limit (Heath 1977), our solution takes all general relativistic corrections into account and is hence valid at both the sub- and super-horizon scales. With this exact solution, we evaluate cosmological impacts induced by these relativistic corrections. (1) General relativistic corrections alter the density growth from z=100 to z=0 by 10% at k=0.01h/Mpc and the impact becomes stronger toward larger scales. We caution the readers that the overdensity is not gauge invariant and the above statement is restrained to the Newtonian gauge. (2) Relativistic corrections introduce a k^{-2} scale dependence in the density fluctuation. It mimics a primordial non-Gaussianity of the local type with $f^{\rm local}_{\rm NL}\sim 1$. This systematical error may become non-negligible for future all sky deep galaxy surveys. (3) Cosmological simulations with box size greater than 1Gpc are also affected by these relativistic corrections. We provide a post-processing recipe to correct for these effects. (4) These relativistic corrections affect the redshift distortion. However, at redshifts and scales relevant to redshift distortion measurements, such effect is negligible.

A Cosmic Coincidence: The Power-Law Galaxy Correlation Function

We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of xi(r), the galaxy two-point correlation function. Departures from a power law are mainly governed by galaxy pair counts on small scales, subject to non-linear dynamics. We assume that galaxies reside within dark matter halos and subhalos and use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal mass loss and, to a lesser degree, dynamical friction deplete the number of subhalos within larger host halos over time by ~90%, just the right amount for achieving a power-law xi(r) at z = 0. We find that xi(r) breaks from a power law at high masses, implying that only galaxies of luminosities <= Lstar should exhibit power-law clustering. We also demonstrate that xi(r) evolves from being far from a power law at high redshift, toward a near power law at z = 0 and deviates in the future. This is mainly caused by the evolving competition between the accretion and destruction rates of subhalos, which happen to strike just the right balance at z~0. We show that key ingredients determining the shape of xi(r) are the fraction of galaxies that are satellites, the relative difference in mass between the halos of isolated galaxies and galaxies that contain a single satellite on average, and the rareness of halos that host galaxies. These pieces are intertwined and we find no simple, universal rule for which a power-law xi(r) will occur. However, we do show that the physics responsible for setting the galaxy content of halos do not care about the conditions needed to achieve a power law xi(r) and these conditions are met only in a narrow mass and redshift range. We conclude that the power-law nature of xi(r) for Lstar and fainter galaxy samples at low redshift is a cosmic coincidence. (Abridged)

Thursday, January 27, 2011

arXiv: 27 January 2011

MD or DM? Modified dynamics at low accelerations vs dark matter

The MOND paradigm posits a departure from standard Newtonian dynamics, and from General Relativity, in the limit of small accelerations. The resulting modified dynamics aim to account for the mass discrepancies in the universe without non-baryonic dark matter. I briefly review this paradigm with its basic tenets, and its underlying theories--nonrelativistic and relativistic--including a novel, bimetric MOND gravity theory. I also comment on MOND's possible connection to, and origin in, the cosmological state of the universe at large. Some of its main predictions, achievements, and remaining desiderata are listed. I then succinctly pit MOND against the competing paradigm of standard dynamics with cold, dark matter. (Abridged)

A Short and Subjective Introduction to the Spinfoam Framework for Quantum Gravity

This is my Th\`ese d'Habilitation (HDR) on the topic of spinfoam models for quantum gravity, which I presented in l'Ecole Normale Sup\'erieure de Lyon on december 16 2010. The spinfoam framework is a proposal for a regularized path integral for quantum gravity, inspired from Topological Quantum Field Theory (TQFT) and state-sum models. It can also be seen as defining transition amplitudes for the quantum states of geometry for Loop Quantum Gravity (LQG).

Foundations of a theory of quantum gravity

After a long technical and consequently philosophical disgression about the necessity of the construction presented in this book, a logically consistent and precise theory of quantum gravity is presented. The construction of this theory goes in several steps; at first we take a fairly conservative point of view and stumble upon some technical difficulties. Consequently, we investigate a new mathematical implication of an old idea to solve these problems; the latter suggest however a completely new way of doing quantum theory. This novel theory automatically incoorporates an extended form of gravity as well as a quantum gauge theory. We compute that the well known free quantum field theories and Newtonian gravity emerge in a suitable limit. The philosophy constructed here is to a high degree Whiteheadian.


arXiv: 26 January 2011

Lensed arc statistics: comparison of Millennium-simulation galaxy clusters to Hubble Space Telescope observations of an X-ray selected sample

It has been debated for a decade whether there is a large overabundance of strongly lensed arcs in galaxy clusters, compared to expectations from LambdaCDM cosmology. We perform ray tracing through the most massive halos of the Millennium simulation at several redshifts in their evolution, using the Hubble Ultra Deep Field as a source image, to produce realistic simulated lensed images. We compare the lensed arc statistics measured from the simulations to those of a sample of 45 X-ray selected clusters, observed with the Hubble Space Telescope, that we have analysed in Horesh et al. (2010). The observations and the simulations are matched in cluster masses, redshifts, observational effects, and the algorithmic arc detection and selection. At z=0.6 there are too few massive-enough clusters in the Millennium volume for a proper statistical comparison with the observations. At redshifts 0.3<z<0.5, however, we have large numbers of simulated and observed clusters, and the latter are an unbiased selection from a complete sample. For these redshifts, we find excellent agreement between the observed and simulated arc statistics, in terms of the mean number of arcs per cluster, the distribution of number of arcs per cluster, and the angular separation distribution. At z ~ 0.2 some conflict remains, with real clusters being ~3 times more efficient arc producers than their simulated counterparts. This may arise due to selection biases in the observed subsample at this redshift, to some mismatch in masses between the observed and simulated clusters, or to physical effects that arise at low redshift and enhance the lensing efficiency, but which are not represented by the simulations.

The power of Bayesian evidence in astronomy

C. R. Jenkins (CSIRO Earth Sciences and Resource Engineering, Canberra), J. A. Peacock (Institute for Astronomy, University of Edinburgh)
We discuss the use of the Bayesian evidence ratio, or Bayes factor, for model selection in astronomy. We treat the evidence ratio as a statistic and investigate its distribution over an ensemble of experiments, considering both simple analytical examples and some more realistic cases, which require numerical simulation. We find that the evidence ratio is a noisy statistic, and thus it may not be sensible to decide to accept or reject a model based solely on whether the evidence ratio reaches some threshold value. The odds suggested by the evidence ratio bear no obvious relationship to the power or Type I error rate of a test based on the evidence ratio. The general performance of such tests is strongly affected by the signal to noise ratio in the data, the assumed priors, and the threshold in the evidence ratio that is taken as `decisive'. The comprehensiveness of the model suite under consideration is also very important. The usefulness of the evidence ratio approach in a given problem can be assessed in advance of the experiment, using simple models and numerical approximations. In many cases, this approach can be as informative as a much more costly full-scale Bayesian analysis of a complex problem.

Anisotropic stress and stability in modified gravity models

The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, trying to make the effective anisotropic stress small, one approaches a singularity which renders the model non-viable.

The information paradox: A pedagogical introduction

The black hole information paradox is a very poorly understood problem. It is often believed that Hawking's argument is not precisely formulated, and a more careful accounting of naturally occurring quantum corrections will allow the radiation process to become unitary. We show that such is not the case, by proving that small corrections to the leading order Hawking computation cannot remove the entanglement between the radiation and the hole. We formulate Hawking's argument as a `theorem': assuming `traditional' physics at the horizon and usual assumptions of locality we will be forced into mixed states or remnants. We also argue that one cannot explain away the problem by invoking AdS/CFT duality. We conclude with recent results on the quantum physics of black holes which show the the interior of black holes have a `fuzzball' structure. This nontrivial structure of microstates resolves the information paradox, and gives a qualitative picture of how classical intuition can break down in black hole physics.

arXiv: 25 January 2011

Almost Birkhoff Theorem in General Relativity

We extend Birkhoff's theorem for almost LRS-II vacuum spacetimes to show that the rigidity of spherical vacuum solutions of Einstein's field equations continues even in the perturbed scenario.

Monday, January 24, 2011

arXiv: 24 January 2011

Weak Lensing Observables in the Halo Model

The halo model (HM) describes the inhomogeneous universe as a collection of halos whose positions satisfy the linear power spectrum. The full nonlinear power spectrum of the universe is well approximated by the HM, whose prediction can be easily computed without lengthy numerical simulations. This makes the HM a useful tool in cosmology. Here we explore the lensing properties of the HM by use of the stochastic gravitational lensing (sGL) method. We obtain exact and simple integral expressions for the expected value and the variance of the lensing convergence, which encode detailed information about the internal halo properties. In particular a wide array of systematic biases can be easily incorporated. This simple setup should be useful for a quick calculation of the power spectrum and the related lensing observables, which can play an important role in the extraction of cosmological parameters from observations. To check the accuracy of our modelling we compare the sGL-HM predictions to the results from the Millennium Simulation.

Site characterization studies for the Iranian National Observatory

We report on the Iranian National Observatory (INO) ongoing site characterization studies for INO 3.4m optical telescope under development. Iran benefits from high altitude mountains and a relatively dry climate, thus offer many suitable sites for optical observations. The site selection (2001-2007) studies resulted in two promising sites in central Iran, one of which will host the 3.4m telescope. The studies between 2008 and 2010 aimed at detail characterization of the two sites. This involved measurements of a number of parameters including the wind speed and wind direction, astronomical seeing, sky brightness and microthermal variations.


Friday, January 21, 2011

arXiv: 21 January 2011

Sudden Future Singularity models as an alternative to Dark Energy?

Current observational evidence does not yet exclude the possibility that dark energy could be in the form of phantom energy. A universe consisting of a phantom constituent will be driven toward a drastic end known as the `Big Rip' singularity where all the matter in the universe will be destroyed. Motivated by this possibility, other evolutionary scenarios have been explored by Barrow, including the phenomena which he called Sudden Future Singularities (SFS). In such a model it is possible to have a blow up of the pressure occurring at sometime in the future evolution of the universe while the energy density would remain unaffected. The particular evolution of the scale factor of the universe in this model that results in a singular behaviour of the pressure also admits acceleration in the current era. In this paper we will present the results of our confrontation of one example class of SFS models with the available cosmological data from high redshift supernovae, baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB). We then discuss the viability of the model in question as an alternative to dark energy.

Effects of Explosion Asymmetry and Viewing Angle on the Type Ia Supernova Color and Luminosity Calibration

Phenomenological relations exist between the peak luminosity and other observables of type Ia supernovae (SNe~Ia), that allow one to standardize their peak luminosities. However, several issues are yet to be clarified: SNe~Ia show color variations after the standardization. Also, individual SNe~Ia can show residuals in their standardized peak absolute magnitude at the level of $\sim 0.15$ mag. In this paper, we explore how the color and luminosity residual are related to the wavelength shift of nebular emission lines observed at $\gsim 150$ days after maximum light. A sample of 11 SNe Ia which likely suffer from little host extinction indicates a correlation ($3.3\sigma$) between the peak $B-V$ color and the late-time emission-line shift. Furthermore, a nearly identical relation applies for a larger sample in which only three SNe with $B-V \gsim 0.2$ mag are excluded. Following the interpretation that the late-time emission-line shift is a tracer of the viewing direction from which an off-centre explosion is observed, we suggest that the viewing direction is a dominant factor controlling the SN color and that a large part of the color variations is intrinsic, rather than due to the host extinction. We also investigate a relation between the peak luminosity residuals and the wavelength shift in nebular emission lines in a sample of 20 SNe. We thereby found a hint of a correlation (at $\sim 1.6 \sigma$ level). The confirmation of this will require a future sample of SNe with more accurate distance estimates. Radiation transfer simulations for a toy explosion model where different viewing angles cause the late-time emission-line shift are presented, predicting a strong correlation between the color and shift, and a weaker one for the luminosity residual.

Cosmic Lighthouses : Unveiling the nature of high-redshift galaxies

We are in the golden age for the search for high-redshift galaxies, made possible by a combination of new instruments and innovative search techniques. One of the major aims of such searches is to constrain the epoch of reionization (EoR), which marks the second major change in the ionization state of the Universe. Understanding the EoR is difficult since whilst it is galaxy evolution which drives reionization, reionization itself influences galaxy evolution through feedback effects. Unraveling the interplay of reionization and galaxy evolution is further complicated by of a lack of understanding of the metal enrichment and dust distribution in high redshift galaxies. To this end, a class of galaxies called Lyman Alpha Emitters (LAEs) have been gaining enormous popularity as probes of all these three processes. In this thesis, we couple state of the art cosmological SPH simulations (GADGET-2) with a physically motivated, self-consistent model for LAEs, so as to be able to understand the importance of the intergalactic medium (IGM) ionization state, dust and peculiar velocities in shaping their observed properties. By doing so, the aim is to gain insight on the nature of LAEs, put precious constraints on their elusive physical properties and make predictions for future instruments such as the Atacama Large Millimeter Array (ALMA). Using our LAE model in conjunction with a code that builds the MW merger tree (GAMETE), we build a bridge between the high-redshift and the local Universe. We also use SPH simulations (GADGET-2) to study the nature of the earliest galaxies that have been detected as of yet, place constraints on their contribution to reionization, and predict their detectability using the next generation of instruments, such as the James Web Space Telescope (JWST).
Ph.D. thesis

Infrared Spectra and Spectral Energy Distributions for Dusty Starbursts and AGN

We present spectroscopic results for all galaxies observed with the Spitzer Infrared Spectrograph (IRS) which also have total infrared fluxes f(ir) measured with the Infrared Astronomical Satellite (IRAS), also using AKARI photometry when available. Infrared luminosities and spectral energy distributions (SEDs) from 8 um to 160 um are compared to polycyclic aromatic hydrocarbon (PAH) emission from starburst galaxies or mid-infrared dust continuum from AGN at rest frame wavelengths ~ 8 um. A total of 301 spectra are analyzed for which IRS and IRAS include the same unresolved source, as measured by the ratio fv(IRAS 25 um)/fv(IRS 25 um). Sources have 0.004 < z < 0.34 and 42.5 < log L(IR) < 46.8 (erg per s) and cover the full range of starburst galaxy and AGN classifications. Individual spectra are provided electronically, but averages and dispersions are presented. We find that log [L(IR)/vLv(7.7 um)] = 0.74 +- 0.18 in starbursts, that log [L(IR)/vLv(7.7 um)] = 0.96 +- 0.26 in composite sources (starburst plus AGN), that log [L(IR)/vLv(7.9 um)] = 0.80 +- 0.25 in AGN with silicate absorption, and log [L(IR)/vLv(7.9 um)] = 0.51 +- 0.21 in AGN with silicate emission. L(IR) for the most luminous absorption and emission AGN are similar and 2.5 times larger than for the most luminous starbursts. AGN have systematically flatter SEDs than starbursts or composites, but their dispersion in SEDs overlaps starbursts. Sources with the strongest far-infrared luminosity from cool dust components are composite sources, indicating that these sources may contain the most obscured starbursts.

Nano-Hertz Gravitational Waves Searches with Interferometric Pulsar Timing Experiments

We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly-stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same time-keeping subsystem (i.e. "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band ($10^{-9} - 10^{-8}$) Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost two orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the forthcoming large arraying projects.

Palatini Approach to Modified Gravity: f(R) Theories and Beyond

We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speedup problem, laboratory and solar systems tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.



Accelerating Universe: Dark Energy vs Modified Gravity / Seminar Series (2)

Speaker:Shant Baghram
Affiliation:Sharif University of Technology
Title: Accelerating Universe: Dark Energy vs Modified Gravity
Date: 21 January 2011
Place: ING+NOT Astro-seminar- Santa Cruz-La Palma- Spain

Abstract:

First, I will give a very brief description of the accelerating universe state and its cosmological evidence like SNIa, CMB and the LSS. Then I propose the Cosmological constants (LCDM-model) and its alternative Dark energy (DE) and Modified gravity (MG) models as plausible candidates for describing the accelerating Universe. Some cosmological observations, especially large scale structure probes such as matter power spectrum, the ISW effect and growth index are discussed later, as useful tools to distinguish between viable DE and MG models which are equivalent in predicting the background dynamics of  Universe. Finally, the reconstruction of the dynamics method as a probable way for investigating the problem is introduced, and the future prospects on the issue is discussed. 

Thursday, January 20, 2011

arXiv: 20 January 2011

On the connection between Newtonian simulations and General Relativity

On large scales, comparable to the horizon, the observable clustering properties of galaxies are affected by various General Relativistic effects. To calculate these effects one needs to consistently solve for the metric, densities and velocities in a specific coordinate system or gauge. The method of choice for simulating large scale structure is numerical N-body simulations which are performed in the Newtonian limit. Even though one might worry that the use of the Newtonian approximation would make it impossible to use these simulations to compute properties on very large scales we show that the simulations are still solving the dynamics correctly even for long modes and give formulas to obtain the position of particles in the Newtonian gauge given the positions computed in the simulation. We also give formulas to convert from the output coordinates of N-body simulations to the observable coordinates of the particles.

Nonlocal Gravity

The analysis of measurements of accelerated observers in Minkowski spacetime has led to the development of nonlocal special relativity theory. Inertia and gravitation are intimately connected in accordance with the principle of equivalence. We therefore seek a nonlocal generalization of the theory of gravitation such that in the new theory the field equations are integro-differential equations for the local gravitational field. We show that it is possible to develop a nonlocal generalization of Einstein's theory of gravitation via the introduction of a scalar "constitutive" kernel in the teleparallel equivalent of general relativity. The resulting nonlocal theory is essentially equivalent to Einstein's theory plus "dark matter". That is, nonlocality simulates dark matter by introducing a new source term into general relativity. In the linear approximation for the nonlocal modification of Newtonian gravity, we recover the theoretical basis for the phenomenological Tohline-Kuhn modified gravity approach to the explanation of the astrophysical evidence for dark matter.

Pulsar Timing Sensitivity to Very-Low-Frequency Gravitational Waves

At nanohertz frequencies gravitational waves (GWs) cause variations in time-of-arrival of pulsar signals potentially measurable via precision timing observations. Here we compute very-low-frequency GW sensitivity constrained by instrumental, propagation, and other noises fundamentally limiting pulsar timing observations. Reaching expected GW signal strengths will require estimation and removal of $\simeq$99% of time-of-arrival fluctuations caused by typical interstellar plasma turbulence and a reduction of white rms timing noise to $\sim$100 nsec or less. If these were achieved, single-pulsar signal-to-noise ratio (SNR) = 1 sensitivity is then limited by the best current terrestrial time standards at $h_{rms} \sim$2 $\times 10^{-16}$ [f/(1 cycle/year)]$^{-1/2}$ for $f < 3 \times 10^{-8}$ Hz, where f is Fourier frequency and a bandwidth of 1 cycle/(10 years) is assumed. This sensitivity envelope may be optimistic in that it assumes negligible intrinsic pulsar rotational noise, perfect time transfer from time standard to observatory, and stable pulse profiles. Nonetheless it can be compared to predicted signal levels for a broadband astrophysical GW background from supermassive black hole binaries. Such a background is comparable to timekeeping-noise only for frequencies lower than about 1 cycle/(10 years), indicating that reliable detections will require substantial improvements in signal-to-noise ratio through pulsar array signal processing.


arXiv: 19 January 2011

The Statefinder hierarchy: An extended null diagnostic for concordance cosmology

We show how higher derivatives of the expansion factor can be developed into a null diagnostic for concordance cosmology (LCDM). It is well known that the Statefinder -- the third derivative of the expansion factor written in dimensionless form, a^{(3)}/aH^3, equals unity for LCDM. We generalize this result to higher derivatives of the expansion factor and demonstrate that the hierarchy, a^{(n)}/aH^n, can be converted to a form that stays pegged at unity in concordance cosmology. This remarkable property of the Statefinder hierarchy enables it to be used as an extended null diagnostic for the cosmological constant. The Statefinder hierarchy combined with the growth rate of matter perturbations defines a composite null diagnostic which can distinguish evolving dark energy from LCDM.



Wednesday, January 19, 2011

arXiv: 18 January 2011

Are Dwarf Galaxies Dominated by Dark Matter?

Mass models for a sample of 18 late-type dwarf and low surface brightness galaxies show that in almost all cases the contribution of the stellar disks to the rotation curves can be scaled to explain most of the observed rotation curves out to two or three disk scale lengths. The concept of a maximum disk, therefore, appears to work as well for these late-type dwarf galaxies as it does for spiral galaxies. Some of the mass-to-light ratios required in our maximum disk fits are high, however, up to about 15 in the R-band, with the highest values occurring in galaxies with the lowest surface brightnesses. Equally well-fitting mass models can be obtained with much lower mass-to-light ratios. Regardless of the actual contribution of the stellar disk, the fact that the maximum disk can explain the inner parts of the observed rotation curves highlights the similarity in shapes of the rotation curve of the stellar disk and the observed rotation curve. This similarity implies that the distribution of the total mass density is closely coupled to that of the luminous mass density in the inner parts of late-type dwarf galaxies.

Monday, January 17, 2011

arXiv: 17 January 2011

Time-dependent matter instability and star singularity in $F(R)$ gravity

Kazuharu BambaShin'ichi NojiriSergei D. Odintsov
We investigate a curvature singularity appearing in the star collapse process in $F(R)$ gravity. In particular, we propose an analytical understanding of the mechanism to produce the curvature singularity. Moreover, we explicitly demonstrate that $R^\alpha$ ($1 < \alpha \leq 2$) term addition could cure the curvature singularity and viable $F(R)$ gravity models could become free of such a singularity. Furthermore, we discuss the realization process of the curvature singularity and estimate the time scale of its appearance. For exponential gravity, it is shown that in case of the star collapse, the time scale is much shorter than the age of the universe, whereas in cosmological circumstances, it is as long as the cosmological time.

Palatini Actions and Quantum Gravity Phenomenology

We show that a quadratic gravitational Lagrangian in the Palatini formulation is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, we show that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. Also, the resulting isotropic and anisotropic cosmologies are free from the big bang singularity. This singularity avoidance occurs non-perturbatively and shares some similitudes with the effective dynamics of loop quantum cosmology.



Thursday, January 13, 2011

arXiv: 14 January 2011

Testing a Phenomenologically Extended DGP Model with Upcoming Weak Lensing Surveys

A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension sigma on the brane, and an extra parameter alpha tunes the cross-over scale r_c, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same LCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Markov Chain Monte Carlo simulations to determine the parameters of the model, using Type Ia Supernov\ae, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear regimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the LCDM matter power spectrum at both linear and non-linear scales and the LCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription: Euclid can distinguish the eDGP model from LCDM because their expected power spectra roughly differ by the 3sigma uncertainty in the angular scale range 700<l<3000; on the contrary, the two models differ at most by the 1sigma uncertainty over the range 500<l<3000 in the DES experiment and they are virtually indistinguishable.

Properties of the HII region populations of M51 and NGC 4449 from Halpha images with ACS on HST

We have used the images from the ACS on HST in Halpha, and in the neighboring continuum, to produce flux calibrated images of the large spiral galaxy M51, and the dwarf irregular NGC 4449. From these images we have derived the absolute luminosities in Halpha, the areas, and the positions with respect to the galactic centers as reference points, of over 2600 HII regions in M51 and over 270 HII regions in NGC 4449. Using this database we have derived luminosity (L)--volume (V) relations for the regions in the two galaxies, showing that within the error limits these obey the equation L ~ V^(2/3), which differs from the linear relation expected for regions of constant uniform electron density. We discuss briefly possible models which would give rise to this behavior, notably models with strong density inhomogeneities within the regions. Plotting the luminosity functions for the two galaxies we find a break in the slope for M51 at log(L) = 38.5 dex (units in erg s^(-1)) for M51 in good agreement with the previous ground-based study by Rand, and above this luminosity NGC 4449 also shows a sharp decline in its luminosity function, although the number of regions is too small to plot the function well at higher luminosities. The cumulative diameter distribution for the HII regions of M51 shows dual behaviour, with a break at a radius close to 100 pc, the radius of regions with the break luminosity. Here too we indicate the possible physical implications.

Growth factor and galaxy bias from future redshift surveys: a study on parametrizations

Many experiments in the near future will test dark energy through its effects on the linear growth of matter perturbations. In this paper we discuss the constraints that future large-scale redshift surveys can put on three different parameterizations of the linear growth factor and how these constraints will help ruling out different classes of dark energy and modified gravity models. We show that a scale-independent bias can be estimated to a few percent per redshift slice by combining redshift distortions with power spectrum amplitude, without the need of an external estimation. We find that the growth rate can be constrained to within 2-4% for each $\Delta z=0.2$ redshift slice, while the equation of state $w$ and the index $\gamma$ can be simultaneously estimated both to within 0.02. We also find that a constant dimensionless coupling between dark energy and dark matter can be constrained to be smaller than 0.14.

Towards a Cosmological Dual to Inflation

We derive all single-field cosmologies with unit sound speed that generate scale invariant curvature perturbations on a dynamical attractor background. We identify three distinct phases: slow-roll inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of state; and a novel adiabatic ekpyrotic phase on a slowly expanding background. All of these yield identical power spectra. The degeneracy is broken at the 3-point level: unlike the nearly gaussian spectrum of slow-roll inflation, adiabatic ekpyrosis predicts large non-gaussianities on small scales. We briefly comment on extending the analysis to the case of a time-dependent sound speed.



Wednesday, January 12, 2011

arXiv: 13 January 2011

Cosmological magnetic field survival

It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generic feature of open Friedmann spacetimes. We estimate the late-time strength of any residual field in a marginally open universe and show that it can easily meet the requirements for the dynamo generation of the magnetic fields observed in galaxies today.

HST/NICMOS Imaging of Bright High-Redshift 24μm-selected Galaxies: Merging Properties

We present new results on the physical nature of infrared-luminous sources at 0.5<z<2.8 as revealed by HST/NICMOS imaging and IRS mid-infrared spectroscopy. Our sample consists of 134 galaxies selected at 24\mum with a flux of S(24\mum) > 0.9 mJy. We find many (~60%) of our sources to possess an important bulge and/or central point source component, most of which reveal additional underlying structures after subtraction of a best-fit sersic (or sersic+PSF) profile. Based on visual inspection of the NIC2 images and their residuals, we estimate that ~80% of all our sources are mergers. We calculate lower and upper limits on the merger fraction to be 62% and 91% respectively. At z < 1.5, we observe objects in early (pre-coalescence) merging stages to be mostly disk and star formation dominated, while we find mergers to be mainly bulge-dominated and AGN-starburst composites during coalescence and then AGN-dominated in late stages. This is analogous to what is observed in local ULIRGs. At z \geq 1.5, we find a dramatic rise in the number of objects in pre-coalescence phases of merging, despite an increase in the preponderance of AGN signatures in their mid-IR spectra and luminosities above 10^12.5 L_sun. We further find the majority of mergers at those redshifts to retain a disk-dominated profile during coalescence. We conclude that, albeit still driven by mergers, these high-z ULIRGs are substantially different in nature from their local counterparts and speculate that this is likely due to their higher gas content. Finally, we observe obscured ({\tau}_{9.7\mum} > 3.36) quasars to live in faint and compact hosts and show that these are likely high-redshift analogs of local dense-core mergers. We find late-stage mergers to show predominantly unobscured AGN spectra, but do not observe other morphological classes to occupy any one specific region in the Spoon diagram. [abridged]

Are small-scale sub-structures a universal property of galaxy halos? The case of the giant elliptical NGC~5128

We present an analysis of the spatial and chemical sub-structures in a remote halo field in the nearby giant elliptical galaxy Centaurus A (NGC~5128), situated at about 38 kpc from the centre of the galaxy. The observations were taken with the Advanced Camera for Surveys instrument on board the Hubble Space Telescope, and reach down to the horizontal branch. In this relatively small 3.8 kpc by 3.8 kpc field, after correcting for Poisson noise, we do not find any statistically strong evidence for the presence of small-scale sub-structures in the stellar spatial distribution on scales greater than 100 pc. However, we do detect the presence of significant small spatial-scale inhomogeneities in the stellar median metallicity over the surveyed field. We argue that these localized chemical substructures could be associated with not-fully mixed debris from the disruption of low mass systems. NGC 5128 joins the ranks of the late-type spiral galaxies the Milky Way, for which the stellar halo appears to be dominated by small-scale spatial sub-structures, and NGC~891, where localized metallicity variations have been detected in the inner extra-planar regions. This suggests that the presence of small-scale sub-structures may be a generic property of stellar halos of large galaxies.