Monday, March 29, 2010

arXiv: 29 Mar 2010

The Dependence of Type Ia Supernova Luminosities on their Host Galaxies
Authors: M. Sullivan, A. Conley, D. A. Howell, J. D. Neill, P. Astier, C. Balland, S. Basa, R. G. Carlberg, D. Fouchez, J. Guy, D. Hardin, I. M. Hook, R. Pain, N. Palanque-Delabrouille, K. M. Perrett, C. J. Pritchet, N. Regnault, J. Rich, V. Ruhlmann-Kleider, S. Baumont, E. Hsiao, T. Kronborg, C. Lidman, S. Perlmutter, E. S. Walker
arXiv:1003.5119v1
(Abridged) Precision cosmology with Type Ia supernovae (SNe Ia) makes use of the fact that SN Ia luminosities depend on their light-curve shapes and colours. Using Supernova Legacy Survey (SNLS) and other data, we show that there is an additional dependence on the global characteristics of their host galaxies: events of the same light-curve shape and colour are, on average, 0.08mag (~4.0sigma) brighter in massive host galaxies (presumably metal-rich) and galaxies with low specific star-formation rates (sSFR). SNe Ia in galaxies with a low sSFR also have a smaller slope ("beta") between their luminosities and colours with ~2.7sigma significance, and a smaller scatter on SN Ia Hubble diagrams (at 95% confidence), though the significance of these effects is dependent on the reddest SNe. SN Ia colours are similar between low-mass and high-mass hosts, leading us to interpret their luminosity differences as an intrinsic property of the SNe and not of some external factor such as dust. If the host stellar mass is interpreted as a metallicity indicator, the luminosity trends are in qualitative agreement with theoretical predictions. We show that the average stellar mass, and therefore the average metallicity, of our SN Ia host galaxies decreases with redshift. The SN Ia luminosity differences consequently introduce a systematic error in cosmological analyses, comparable to the current statistical uncertainties on parameters such as w. We show that the use of two SN Ia absolute magnitudes, one for events in high-mass (metal-rich) galaxies, and one for events in low-mass (metal-poor) galaxies, adequately corrects for the differences. Cosmological fits incorporating these terms give a significant reduction in chi^2 (3.8-4.5sigma). We conclude that future SN Ia cosmological analyses should use a correction of this (or similar) form to control demographic shifts in the galaxy population.

A Universe without Dark Energy and Dark Matter
Authors: Shlomo Barak, Elia M. Leibowitz
arXiv:1003.5092v1
The universe has evolved to be a filamentary web of galaxies and large inter-galactic zones of space without matter. The Euclidian nature of the universe indicates that it is not a 3D manifold within space with an extra spatial dimension. This justifies our assumption that the FRW space-time evolves in the inter-galactic zones like separate FRW universes. Thus we do not necessarily have to consider the entirety of the universe. Our assumption enables us to prove that: -In the current epoch, space in the intergalactic zones expands at a constant rate. -In and around galaxies, space expansion is inhibited. With these results, and an extended Gauss Theorem for a deformed space, we show that there is no need for the hypothetical Dark Energy (DE) and Dark Matter (DM) to explain phenomena attributed to them.

$f(R)$ theory and geometric origin of the dark sector in Horava-Lifshitz gravity
Authors: Anzhong Wang
arXiv:1003.5152v1
$f(R)$ theory in the framework of Horava-Lifshitz quantum gravity with projectability but without detailed balance condition is investigated, and conditions for the spin-0 graviton to be free of ghosts and instability are studied. The requirement that the theory reduce to general relativity in IR makes the scalar mode unstable in the Minkowski background but stable in the de Sitter. It is remarkable that the dark sector, dark matter and dark energy, of the universe has a naturally geometric origin in such a setup. Bouncing universes can also be constructed. Scalar perturbations in FRW backgrounds with non-zero curvature are given.

An introduction to the theory of rotating relativistic stars
Authors: Eric Gourgoulhon
arXiv:1003.5015v1
These lecture notes are intended to introduce the theory of rotating stars in general relativity. The focus is put on the theoretical foundations, with a detailed discussion of the spacetime symmetries, the choice of coordinates and the derivation of the equations of structure from Einstein equation. The global properties of rotating stars (mass, angular momentum, redshifts, orbits, etc.) are also introduced.

Higher-order Statistics of Weak Lensing Shear and Flexion
Authors: Dipak Munshi, Joseph Smidt, Alan Heavens, Peter Coles, Asantha Cooray
arXiv:1003.5003v1
Owing to their more extensive sky coverage and tighter control on systematic errors, future deep weak lensing surveys should provide a better statistical picture of the dark matter clustering beyond the level of the power spectrum. In this context, the study of non-Gaussianity induced by gravity can help tighten constraints on the background cosmology by breaking parameter degeneracies, as well as throwing light on the nature of dark matter, dark energy or alternative gravity theories. Analysis of the shear or flexion properties of such maps is more complicated than the simpler case of the convergence due to the spinorial nature of the fields involved. Here we develop analytical tools for the study of higher-order statistics such as the bispectrum (or trispectrum) directly using such maps at different source redshift. The statistics we introduce can be constructed from cumulants of the shear or flexions, involving the cross-correlation of squared and cubic maps at different redshifts. Typically, the low signal-to-noise ratio prevents recovery of the bispectrum or trispectrum mode by mode. We define power spectra associated with each multi- spectra which compresses some of the available information of higher order multispectra. We show how these can be recovered from a noisy observational data even in the presence of arbitrary mask, which introduces mixing between Electric (E-type) and Magnetic (B-type) polarization, in an unbiased way. We also introduce higher order cross-correlators which can cross-correlate lensing shear with different tracers of large scale structures.

Primordial non-Gaussianity from the large scale structure
Authors: Vincent Desjacques, Uros Seljak
arXiv:1003.5020v1
Primordial non-Gaussianity is a potentially powerful discriminant of the physical mechanisms that generated the cosmological fluctuations observed today. Any detection of non-Gaussianity would have profound implications for our understanding of cosmic structure formation. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large scale structure of the Universe.

No comments: