Extrasolar Asteroid Mining as Forensic Evidence for Extraterrestrial Intelligence
Duncan Forgan, Martin Elvis
http://arxiv.org/abs/1103.5369v1
The development of civilisations like ours into spacefaring, multi-planet entities requires significant raw materials to construct vehicles and habitats. Interplanetary debris, including asteroids and comets, may provide such a source of raw materials. In this article we present the hypothesis that extraterrestrial intelligences (ETIs) engaged in asteroid mining may be detectable from Earth. Considering the detected disc of debris around Vega as a template, we explore the observational signatures of targeted asteroid mining (TAM), such as unexplained deficits in chemical species, changes in the size distribution of debris and other thermal signatures which may be detectable in the spectral energy distribution (SED) of a debris disc. We find that individual observational signatures of asteroid mining can be explained by natural phenomena, and as such they cannot provide conclusive detections of ETIs. But, it may be the case that several signatures appearing in the same system will prove harder to model without extraterrestrial involvement. Therefore signatures of TAM are not detections of ETI in their own right, but as part of "piggy-back" studies carried out in tandem with conventional debris disc research, they could provide a means of identifying unusual candidate systems for further study using other SETI techniques.
http://arxiv.org/abs/1103.5369v1
The development of civilisations like ours into spacefaring, multi-planet entities requires significant raw materials to construct vehicles and habitats. Interplanetary debris, including asteroids and comets, may provide such a source of raw materials. In this article we present the hypothesis that extraterrestrial intelligences (ETIs) engaged in asteroid mining may be detectable from Earth. Considering the detected disc of debris around Vega as a template, we explore the observational signatures of targeted asteroid mining (TAM), such as unexplained deficits in chemical species, changes in the size distribution of debris and other thermal signatures which may be detectable in the spectral energy distribution (SED) of a debris disc. We find that individual observational signatures of asteroid mining can be explained by natural phenomena, and as such they cannot provide conclusive detections of ETIs. But, it may be the case that several signatures appearing in the same system will prove harder to model without extraterrestrial involvement. Therefore signatures of TAM are not detections of ETI in their own right, but as part of "piggy-back" studies carried out in tandem with conventional debris disc research, they could provide a means of identifying unusual candidate systems for further study using other SETI techniques.
What do we really know about Dark Energy?
Ruth Durrer
http://arxiv.org/abs/1103.5331v1
In this paper I discuss what we truly know about dark energy. I shall argue that up to date our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, CMB anisotropies and observations of baryon acoustic oscillations, they all simply tell us that the observed distance to a given redshift is larger than the one expected from a Friedmann Lemaitre universe with matter only and the locally measured Hubble parameter.
http://arxiv.org/abs/1103.5331v1
In this paper I discuss what we truly know about dark energy. I shall argue that up to date our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, CMB anisotropies and observations of baryon acoustic oscillations, they all simply tell us that the observed distance to a given redshift is larger than the one expected from a Friedmann Lemaitre universe with matter only and the locally measured Hubble parameter.